Tetrahedron 65 (2009) 4099-4105

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of polyketide-type phenols by domino 'Michael/retro-Michael/Aldol' reactions of 3-formylchromones with silyl enol ethers derived from ethyl 3,5-dioxohexanoate

Muhammad Adeel^a, Muhammad Nawaz^a, Alexander Villinger^a, Helmut Reinke^a, Christine Fischer^b, Peter Langer^{a,b,*}

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany ^b Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

ARTICLE INFO

Article history: Received 6 January 2009 Received in revised form 21 March 2009 Accepted 23 March 2009 Available online 1 April 2009

ABSTRACT

Highly functionalized polyketide-type phenols were prepared by domino 'Michael/retro-Michael/aldol' reactions of 3-formylchromones with 1-ethoxy-1,3,5-tris(trimethylsilyloxy)-1,3,5-hexatriene and its synthetic precursor, ethyl 3,5-bis(trimethylsilyloxy)-2,4-hexadienoate.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, several one-pot cyclization reactions of 1,3bis(silyloxy)-1,3-butadienes, such as A,¹ have been reported (Scheme 1). This includes, for example, cyclizations with oxalyl chloride to give butenolides,² formal [3+3] cyclocondensations to give salicylates,³ syntheses of 2-alkylidenetetrahydrofurans,⁴ reactions with iminium salts,⁵ and domino reactions with benzopyrylium triflates.⁶ In contrast, reactions of 1,3,5-tris(silyloxy)-1,3,5-hexatrienes, such as **B**, have only scarcely been reported to date. Trienes **B** contain three rather than only two masked carbonyl groups. Chan and co-workers studied their reaction with acid chlorides to give polyketides, which spontaneously underwent an intramolecular aldol reaction to give hydroxylated arenes.⁷ The cyclization of **B** with oxalyl chloride has also been reported.⁸ Recently, we developed a new synthesis of 4-(2-hydroxybenzoyl)phenols by domino reaction of 1,3-bis(silyloxy)-1,3-butadienes with 3-formylchromones.⁹ Herein, we report for the first time the application of this methodology to 1-ethoxy-1,3,5-

Scheme 1. Structure of 1,3-bis(silyloxy)-1,3-butadiene A and 1,3,5-tris(silyloxy)-1,3,5-hexatriene B.

* Corresponding author. Tel.: +49 381 4986410; fax: +49 381 4986412. *E-mail address*: peter.langer@uni-rostock.de (P. Langer).

0040-4020/\$ – see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.03.070

tris(trimethylsilyloxy)-1,3,5-hexatriene and its synthetic precursor, ethyl 3,5-bis(trimethylsilyloxy)-2,4-hexadienoate. The domino reactions reported herein provide a convenient access to highly functionalized polyketide-type phenols, which are not readily available by other methods.

2. Results and discussion

1,3,5-Tris(silyloxy)-1,3,5-hexatriene **3** was prepared, following the procedure reported for the synthesis of the methoxy derivative,⁷ in two steps (Scheme 1). The silylation of ethyl 3,5-dioxohexanoate (**1**) gave ethyl 3,5-bis(trimethylsilyloxy)-2,4-hexadienoate (**2**). Deprotonation of the latter with LDA and subsequent addition of Me₃SiCl gave **3** in 80% overall yield (Scheme 2). The reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadiene **2** with 3-formylchromones **4a**–**j** afforded the functionalized 4-(2-hydroxy-benzoyl)phenols **5a**–**j** (Scheme 3, Table 1). The formation of the

Scheme 2. Synthesis of **3**: (i) Me₃SiCl (3.6 equiv), NEt₃ (3 equiv), C₆H₆, 20 °C, 72 h; (ii) (1) LDA (1.5 equiv), THF, -78 °C, 1 h; (2) Me₃SiCl (2.5 equiv), 20 °C, $-78 \rightarrow 20$ °C.

Scheme 3. Synthesis of **5a–j**. Reagents and conditions: (i) (1) **4a–j** (1.0 equiv), Me₃–SiOTf (0.3 equiv), 20 °C, 10 min; (2) **2** (1.3 equiv), CH₂Cl₂, $0 \rightarrow 20$ °C, 12 h; (3) HCl (10%).

Table 1 Synthesis of 5a–j

4,5	R ¹	R ²	Yield ^a (%)	δ^{b} (O–H)
a	Н	Н	79	11.67, 12.62
b	Me	Н	88	11.47, 12.62
с	Et	Н	63	11.48, 12.64
d	iPr	Н	52	11.47, 12.65
e	NO ₂	Н	43	12.28, 12.70
f	Br	Н	54	11.55, 12.66
g	Br	Br	56	12.10, 12.68
h	Cl	Н	76	11.54, 12.65
i	Cl	Cl	80	11.93, 12.67
j	F	Н	79	11.36, 12.63

^a Yields of isolated products.

^b Chemical shifts (¹H NMR, CDCl₃).

products can be explained by a domino 'Michael/retro-Michael/ aldol' reaction: the reaction of **4a–j** with Me₃SiOTf gave pyrylium triflate **A**. The conjugate addition of the diene onto **A** afforded intermediate **B**, which underwent a retro-Michael reaction to give intermediate **C**. An aldol reaction of the latter gave intermediate **D**, which underwent an elimination of silanolate and aromatization (before or during the aqueous work-up) to give the final product. The best yields were obtained for products **5a,b,h–j**, which are derived from the chlorinated and fluorinated chromones **4h–j**, from parent formylchromone **4a** and from **4b**.

The structures of all products were established by spectroscopic methods. The structures of **5e**, **5h**, and **5j** were independently confirmed by X-ray crystal structure analyses (Figs. 1 and 2).¹⁰ All products possess two low field signals (¹H NMR, CDCl₃) for the protons involved in intramolecular hydrogen bonds O–H···O.¹¹ The chemical shifts of the hydroxyl proton derived from the chromone moiety are found in the range of δ =11.36–12.10 ppm and strongly depend on the substitution pattern (Table 1). The most extreme downfield shift is observed for derivative **5e** (δ =12.28), due to the electron-withdrawing effect of the nitro group. Extreme low field

Figure 2. Ortep plot of 5j.

shifts are observed also for compounds **5g** and **5i** containing two halogen atoms.

The signals of the hydroxyl protons of the second phenol moiety (which is derived from the diene **2**) are located in a rather narrow chemical shift range (δ =12.62–12.70 ppm). This can be explained by the fact that the substitution pattern of this phenol moiety is the same for all derivatives **5a**–**j**. The chemical shifts of the hydroxyl protons appear in the same range as earlier reported⁹ for derivatives **5k** and **5l** (Scheme 4). It is worth to be noted that the

Scheme 4. Chemical shifts (¹H NMR) of OH protons of 5a, 5k, and 5l.

hydroxyl proton may participate in a hydrogen bond either to the acetyl or the ester oxygen atom. In the solid state structures of **5e**, **5h**, and **5j**, the hydrogen bonds involve the ester group. However, the solution structures might be different. The comparison of the chemical shifts of the low field signals of **5a–j** with those of derivatives **5k** and **5l**, containing an acetyl and an ester group, do not allow to clearly distinguish the solution structure. However, the ester group is expected to be a better hydrogen bond acceptor than the keto group, which is in accordance with the structures observed in the solid state.

The cyclization of 3-formylchromones **4a–j** with 1,3,5-tris(silyloxy)-1,3,5-hexatriene **3** afforded the 4-(2-hydroxybenzoyl)phenols **6a–j**, which represent regioisomers of **5a–j** (Scheme 5, Table 2). The cyclizations involve, as expected, the terminal carbon atom of the triene. The formation of phenols **6a–j**, which can be regarded as masked polyketides, can be explained by the mechanism depicted in Scheme 5. All products exist in their keto tautomeric form. The yields of **6a–j** are generally lower than the yields of **5a–j**. This can be explained by the unstable nature of triene **3**, which results in some decomposition and hydrolysis under the

Scheme 5. Synthesis of **6a–j**. Reagents and conditions: (i) (1) **4a–j** (1.0 equiv), Me₃₋ SiOTf (0.3 equiv), 20 °C, 10 min; (2) **3** (1.1 equiv), CH₂Cl₂, $0 \rightarrow 20$ °C, 12 h; (3) HCl (10%).

Table 2 Synthesis of 6a–j

4,6	\mathbb{R}^1	R ²	Yield ^a (%)	$\delta^{\rm b}$ (O–H)
a	Н	Н	43	11.63, 12.14
b	Me	Н	36	11.60, 12.29
с	Et	Н	45	11.60, 12.30
d	iPr	Н	47	11.59, 12.30
e	NO ₂	Н	30	12.30, 12.30
f	Br	Н	31	11.56, 12.24
g	Br	Br	33	12.13, 12.27
h	Cl	Н	37	11.63, 12.33
i	Cl	Cl	59	12.13, 12.27
j	F	Н	34	11.39, 12.23

^a Yields of isolated products.

^b Chemical shifts (¹H NMR, CDCl₃).

reaction conditions. In fact, a small amount of 3,5-dioxoester **1** was isolated as side-product in all reactions. Similar to products **5a** and **5i**, relatively good yields are obtained for **6a** and **6i**, which are derived from parent formylchromone **4a** and from dichlorinated formylchromone **4i**, respectively. Besides, the trends of the yields of products **5** and **6** are quite different from each other.

Two low field signals, assigned to hydroxyl protons, are observed also for products **6a–j** (Table 2). The signals assigned to the chromone-derived hydroxyl protons are in the range of δ =11.39–12.20 ppm and again depend on the substitution pattern. In contrast, the signals of the other hydroxyl protons are found in a rather narrow range.

In conclusion, we have reported the synthesis of highly functionalized polyketide-type phenols by domino 'Michael/retro-Michael/aldol' reactions of 3-formylchromones with 1-ethoxy-1,3,5-tris(trimethylsilyloxy)-1,3,5-hexatriene and its synthetic precursor, ethyl 3,5-bis(trimethylsilyloxy)-2,4-hexadienoate. The products are not readily available by other methods.

3. Experimental section

3.1. General comments

All solvents were dried by standard methods and all reactions were carried out under an inert atmosphere. For ¹H and ¹³C NMR spectra the deuterated solvents indicated were used. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, H₂O) or electrospray ionization (ESI). For preparative scale chromatography, silica gel (60–200 mesh) was used. Melting points are uncorrected. Compounds **2a**–**c** are commercially available.

3.1.1. Ethyl 3,5-bis(trimethylsiloxy)hexa-2,4-dienoate (2)

To a stirred benzene solution (95 mL) of **1** (5.36 g, 31.16 mmol) was added triethylamine (13 mL, 93.6 mmol). After stirring for 2 h TMSCl (14.18 mL, 112.32 mmol) was added. After stirring for 72 h, the solvent was removed in vacuo and to the residue was added Hexane (50 mL) to give a suspension. The latter was filtered under argon atmosphere. The filtrate was distilled in vacuo to give **2** as yellow oil (8.10 g, 82%). ¹H NMR (250 MHz, CDCl₃): δ =0.14–0.21 (br s, 18H, CH₃), 1.16 (t, 3H, *J*=7.1 Hz, CH₃), 2.01 (s, 3H, CH₃), 4.01 (q, 2H, *J*=6.8 Hz, OCH₂), 5.71 (s, 1H, CH), 6.67 (s, 1H, CH); ¹³C NMR (62.90 MHz, CDCl₃): δ =0.02–1.17 (6C, CH₃), 14.3 (CH₃), 21.57 (CH₃), 60.9 (OCH₂), 96.6, 103.5 (CH), 160.6, 165.0 (COSi(CH₃)₃), 167.3 (C=O).

3.1.2. 1,3,5-Tris (trimethylsiloxy)-1-ethoxyhexa-1,3,5-triene (3)

Starting with LDA (38 mmol, 1.5 equiv), **2** (8 g, 25.30 mmol), TMSCI (8.0 mL, 63.25 mmol), and THF (45 mL), **3** was isolated as a yellow oil (7.80 g, 80%). ¹H NMR (250 MHz, CDCl₃): δ =0.11–0.43 (br s, 27H, CH₃), 1.14 (t, 3H, *J*=7.2 Hz, CH₃), 4.11 (q, 2H, *J*=7.0 Hz, OCH₂), 4.20 (s, 1H, CH), 4.51 (d, 1H, *J*=2 Hz, CH), 4.82 (s, 1H, CH), 5.57 (d, 1H, *J*=2 Hz, CH); ¹³C NMR (62.90 MHz, CDCl₃): δ =0.05–1.23 (9C, CH₃), 14.0 (CH₃), 62.9 (OCH₂), 78.4 (CH), 92.1 (CH₂), 105.4 (CH), 153.0, 155.0, 158.7 (COSi(CH₃)₃).

3.2. General procedure for the synthesis of 5a-j

To 3-formylchromones **4a–j** (1.0 equiv) was added Me₃SiOTf (0.3 equiv) at 20 °C. After stirring for 10 min CH₂Cl₂ (8 mL/mmol) was added, the solution was cooled to 0 °C, and the ethyl 3,5-bis(trimethylsiloxy)hexa-2,4-dienoate **2** (1.1 equiv) was added. The mixture was stirred for 12 h at 20 °C and was subsequently poured into an aqueous solution of hydrochloric acid (10%). The organic and the aqueous layer were separated and the latter was extracted with CH₂Cl₂ (3×80 mL). The combined organic layers were washed

with brine, dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromato-graphy (silica gel, *n*-heptane/EtOAc=10:1).

3.2.1. Ethyl 3-acetyl-2-hydroxy-5-(2-hydroxybenzoyl)benzoate (**5a**)

Starting with 3-formylchromone **4a** (261 mg, 1.5 mmol), 3,5bis(silyl enol ether) **2** (521 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), **5a** was isolated as a yellowish crystalline solid (390 mg, 79%), mp=111–113 °C; ¹H NMR (250 MHz, CDCl₃): δ =1.35 (t, 3H, *J*=6.6 Hz, CH₃), 2.66 (s, 3H, CH₃), 4.35 (q, 2H, *J*=7.8 Hz, OCH₂), 6.80 (t, 1H, *J*=8.5 Hz, ArH), 6.98 (d, 1H, *J*=9.6 Hz, ArH), 7.42–7.48 (m, 2H, ArH), 8.26 (d, 1H, *J*=2.8 Hz, ArH), 8.37 (d, 1H, *J*=3.4 Hz, ArH), 11.67 (s, 1H, OH), 12.62 (s, 1H, OH); ¹³C NMR (62.90 MHz, CDCl₃): δ =14.1, 30.6 (CH₃), 62.3 (OCH₂), 115.6 (C), 118.6 (CH), 118.7 (C), 118.9 (CH), 125.3, 128.4 (C), 132.7, 136.5, 136.6, 137.3 (CH), 163.0 (C–OH), 164.2 (C=O), 168.3 (C–OH), 198.3, 199.0 (C=O); IR (neat): *v*=3066 (w), 2985 (w), 2850 (w), 1737 (w), 1677 (s), 1624 (s), 1586 (s), 1483 (m), 1454 (m), 1174 (s), 760 (s) cm⁻¹; GC–MS (EI, 70 eV) *m/z* (%): 328 (M⁺, 86), 282 (100), 254 (47), 239 (49), 211 (20), 121 (67); HRMS (EI) calcd for C₁₈H₁₆O₆ [M⁺]: 328.09414, found: 328.093983.

3.2.2. Ethyl 3-acetyl-2-hydroxy-5-(2-hydroxy-5methylbenzoyl)benzoate (**5b**)

Starting with 6-methyl-3-formylchromone **4b** (282 mg, 1.5 mmol), 3,5-bis(silyl enol ether) 2 (521 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), 5b was isolated as a yellow crystalline solid (450 mg, 88%), mp=124-126 °C. ¹H NMR (250 MHz. CDCl₃): δ =1.35 (t, 3H, *I*=7.7 Hz, CH₃), 2.19 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 4.35 (q, 2H, J=9.0 Hz, CH₂), 6.89 (d, 1H, J=7.7 Hz, ArH), 7.19-7.28 (m, 2H, ArH), 8.26 (d, 1H, J=2.2 Hz, ArH), 8.36 (d, 1H, J=2.3 Hz, ArH), 11.47 (s, 1H, OH), 12.62 (s, 1H, OH); ¹³C NMR (62.90 MHz, CDCl₃): *δ*=14.1, 20.4, 30.6 (CH₃), 62.3 (OCH₂), 115.6 (C), 118.3 (CH), 118.4, 125.2, 128.1, 128.5 (C), 132.3, 136.9, 137.3, 137.6 (CH), 161.0 (C-OH), 164.2 (C=O), 168.3 (C-OH), 198.2, 199.1 (C=O); IR (neat): v=2983 (w), 2992 (w), 2855 (w), 1737 (w), 1682 (s), 1662 (s), 1628 (s), 1583 (s), 1480 (m), 1455 (m), 1170 (s), 784 (s) cm⁻¹; GC–MS (EI, 70 eV) *m/z* (%): 342 (M⁺, 77), 296 (100), 281 (18), 253 (41), 225 (17), 134 (48); HRMS (EI) calcd for C₁₉H₁₈O₆ [M⁺]: 342.10979, found: 342.109773.

3.2.3. Ethyl 3-acetyl-5-(5-ethyl-2-hydroxybenzoyl)-2-hydroxybenzoate (**5c**)

Starting with 6-ethyl-3-formylchromone 4c (303 mg, 1.5 mmol), 3,5-bis(silyl enol ether) 2 (521 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), 5c was isolated as yellowish oil (337 mg, 63%). ¹H NMR (250 MHz, CDCl₃): δ =1.12 (t, 3H, J=6.8 Hz, 3CH₃), 1.35 (t, 3H, J=7.4 Hz, CH₃), 2.456 (q, 2H, J=8.1 Hz, CH₂), 2.66 (s, 3H, CH₃), 4.35 (q, 2H, J=7.4 Hz, OCH₂), 6.92 (d, 1H, J=7.4 Hz, ArH), 7.28-7.32 (m, 2H, ArH), 8.30 (d, 1H, J=3.3 Hz, ArH), 8.39 (d, 1H, J=1.6 Hz, ArH), 11.48 (s, 1H, OH), 12.64 (s, 1H, OH); ¹³C NMR (62.90 MHz, CDCl₃): δ =14.1, 15.7 (CH₃), 27.9 (CH₂), 30.5 (CH₃), 62.3 (OCH₂), 115.5 (C), 118.4 (CH), 125.3, 128.4, 128.5 (C), 131.2 (CH), 134.6 (C), 136.5, 136.8, 137.5 (CH), 161.1 (C-OH), 164.2 (C=O), 168.2 (C-OH), 198.1, 199.1 (C=O); IR (neat): v=2993 (w), 2966 (w), 2929 (w), 1737 (w), 1626 (m), 1584 (s), 1479 (m), 1322 (m), 1245 (s), 1169 (s), 1020 (s), 789 (s) cm⁻¹; GC–MS (EI, 70 eV) *m*/*z* (%): 356 (M⁺, 74), 310 (100), 282 (22), 267 (37), 239 (15), 148 (49); HRMS (EI) calcd for C₂₀H₂₀O₆ [M⁺]: 356.12544, found: 356.125099.

3.2.4. Ethyl 3-acetyl-2-hydroxy-5-(2-hydroxy-5isopropylbenzoyl)benzoate (5d)

Starting with 6-isopropyl-3-formylchromone **4d** (324 mg, 1.5 mmol), 3,5-bis(silyl enol ether) **2** (521 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), **5d** was isolated as a yellowish oil (329 mg, 59%). ¹H NMR (250 MHz, CDCl₃): δ =1.11 (d, 6H, *J*=7.0 Hz,

2CH₃), 1.31 (t, 3H, *J*=7.2 Hz, CH₃), 2.66 (s, 3H, CH₃), 2.78 (m,1H, CH), 4.34 (q, 2H, *J*=7.6 Hz, OCH₂), 6.92 (d, 1H, *J*=8.6 Hz, ArH), 7.30–7.36 (m, 2H, ArH), 8.32 (d, 1H, *J*=2.5 Hz, ArH), 8.40 (d, 1H, *J*=2.5 Hz, ArH), 11.47 (s, 1H, OH), 12.65 (s, 1H, OH); ¹³C NMR (62.90 MHz, CDCl₃): δ =14.1 (CH₃), 23.9 (2C, CH₃), 30.4 (CH₃), 33.14 (CH), 62.3 (OCH₂), 115.6 (C), 118.3 (CH), 125.3, 128.3, 128.4 (C), 129.8, 135.2, 136.9, 137.6 (CH), 139.2 (C), 161.1 (C–OH), 164.3 (C=O), 168.2 (C–OH), 198.0, 199.1 (C=O); IR (neat): *v*=3067 (w), 2960 (w), 2928 (w), 2871 (w), 1731 (w), 1674 (s), 1628 (s), 1584 (s), 1480 (m), 1453 (m), 1176 (s), 788 (s) cm⁻¹; GC–MS (EI, 70 eV) *m/z* (%): 370 (M⁺, 81), 324 (100), 309 (90), 281 (26), 162 (26), 147 (93); HRMS (EI) calcd for C₂₁H₂₂O₆ [M⁺]: 370.14109, found: 370.140795.

3.2.5. Ethyl 3-acetyl-5-(5-nitro-2-hydroxybenzoyl)-2hydroxybenzoate (**5e**)

Starting with 6-nitro-3-formylchromone **4e** (138 mg, 0.63 mmol), 3,5-bis(silyl enol ether) **2** (218 mg, 0.69 mmol), and Me₃SiOTf (0.03 mL, 0.18 mmol), **5e** was isolated as a crystalline solid (100 mg, 43%), mp=107-109 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.36 (t, 3H, *J*=7.0 Hz, CH₃), 2.68 (s, 3H, CH₃), 4.40 (q, 2H, *J*=8.1 Hz, CH₂), 7.11 (d, 1H, *J*=8.9 Hz, ArH), 8.31–8.35 (m, 2H, ArH), 8.40 (d, 1H, *J*=2.1 Hz, ArH), 8.45 (d, 1H, *J*=2.6 Hz, ArH), 12.28 (s, 1H, OH), 12.70 (s, 1H, OH); ¹³C NMR (62.90 MHz, CDCl₃): δ =14.1, 30.7 (CH₃), 62.6 (OCH₂), 115.8, 117.6 (C), 119.7 (CH), 126.1, 126.9 (C), 128.7, 131.0, 136.4, 137.4 (CH), 139.58 (C), 164.9 (C-OH), 167.7 (C=O), 168.2 (C-OH), 197.2, 198.4 (C=O); IR (neat): *v*=3074 (w), 2990 (w), 2914 (m), 1731 (m), 1667 (s), 1620 (s), 1446 (s), 1331 (s), 1175 (s), 749 (s) cm⁻¹; GC-MS (EI, 70 eV): *m/z* (%): 373 (M⁺, 35), 327 (82), 312 (100), 299 (43), 189 (16), 166 (20), 135 (41); HRMS (EI) calcd for C₁₈H₁₅NO₈ [M⁺]: 373.07922, found: 373.078896.

3.2.6. Ethyl 3-acetyl-5-(5-bromo-2-hydroxybenzoyl)-2hydroxybenzoate (**5f**)

Starting with 6-bromo-3-formylchromone 4f (253 mg, 1.0 mmol), 3,5-bis(silyl enol ether) 2 (348 mg, 1.1 mmol), and Me₃SiOTf (0.05 mL, 0.3 mmol), **5f** was isolated as a crystalline solid $(219 \text{ mg}, 54\%), \text{mp}=118-120 \circ \text{C}, {}^{1}\text{H} \text{ NMR} (250 \text{ MHz}, \text{CDCl}_{3}); \delta=1.37$ (t, 3H, J=7.1 Hz, CH₃), 2.68 (s, 3H, CH₃), 4.40 (q, 2H, J=7.1 Hz, OCH₂), 6.91 (d, 1H, J=8.4 Hz, ArH), 7.51-7.57 (m, 2H, ArH), 8.27 (d, 1H, J=2.6 Hz, ArH), 8.36 (d, 1H, J=3.6 Hz, ArH), 11.55 (s, 1H, OH), 12.66 (s, 1H, OH); ¹³C NMR (62.90 MHz, CDCl₃): δ =14.1, 30.6 (CH₃), 62.4 (OCH₂), 110.5, 115.7, 120.0 (C), 120.7 (CH), 125.6, 127.7 (C), 134.6, 136.6, 137.3, 139.1 (CH), 161.9 (C-OH), 164.5 (C=O), 168.2 (C-OH), 197.2, 198.8 (C=O); IR (neat): v=3072 (w), 2942 (w), 2929 (w), 1731 (w), 1673 (s), 1627 (s), 1586 (s), 1462 (m), 1446 (s), 1407 (s), 1316 (s), 1174 (s) cm⁻¹; GC–MS (EI, 70 eV) *m/z* (%): 408 (M⁺, ⁸¹Br, 48), 406 (M⁺, ⁷⁹Br, 46), 362 (98), 360 (100), 345 (22), 334 (28), 332 (24), 317 (30), 201 (43); HRMS (EI) calcd for $C_{18}H_{15}BrO_6$ [M⁺, ⁷⁹Br]: 406.00465, found 406.003581.

3.2.7. Ethyl 3-acetyl-5-(3,5-dibromo-2-hydroxybenzoyl)-2hydroxybenzoate (**5g**)

Starting with 6,8-dibromo-3-formylchromone **4g** (331 mg, 1.0 mmol), 3,5-bis(silyl enol ether) **2** (348 mg, 1.1 mmol), and Me₃SiOTf (0.05 mL, 0.3 mmol), **5g** was isolated as a crystalline solid (219 mg, 56%), mp=139–141 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.37 (t, 3H, *J*=7.1 Hz, CH₃), 2.67 (s, 3H, CH₃), 4.40 (q, 2H, *J*=7.1 Hz, OCH₂), 7.55 (d, 1H, *J*=2 Hz, ArH), 7.83 (d, 1H, *J*=2.3 Hz, ArH), 8.27 (d, 1H, *J*=2.3 Hz, ArH), 8.36 (d, 1H, *J*=2 Hz, ArH), 12.10 (s, 1H, OH), 12.68 (s, 1H, OH); ¹³C NMR (62.90 MHz, CDCl₃): δ =14.1, 30.6 (CH₃), 62.5 (OCH₂), 110.5, 113.5, 115.7, 120.5, 125.8, 127.2 (C), 133.8, 136.6, 137.4, 141.4 (CH), 158.4 (C–OH), 164.8 (C=O), 168.2 (C–OH), 196.8, 198.5 (C=O); IR (neat): *v*=3079 (w), 3062 (w), 2994 (w), 1731 (w), 1669 (s), 1622 (s), 1587 (s), 1434 (m), 1414 (s), 1247 (s), 1159 (s), 787 (s) cm⁻¹; GC–MS (EI, 70 eV) *m/z* (%): 488 (M⁺, [2×⁸¹Br], 12), 486 (M⁺, [⁸¹Br⁷⁹Br], 25), 484 (M⁺, [2×⁷⁹Br], 12), 442 (48), 440 (100), 412

(23), 279 (18), 189 (36). HRMS (EI) calcd for $C_{18}H_{14}Br_2O_6~[M^+, 2\times^{79}Br]$: 483.91516, found: 483.915551.

3.2.8. Ethyl 3-acetyl-5-(5-chloro-2-hydroxybenzoyl)-2-hydroxybenzoate (**5h**)

Starting with 6-chloro-3-formylchromone 4h (208 mg, 1.0 mmol), 3.5-bis(silvl enol ether) 2 (348 mg, 1.1 mmol), and Me₃SiOTf (0.05 mL, 0.3 mmol). **5h** was isolated as a crystalline solid (279 mg, 76%), mp=124-125 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.37 (t, 3H, *J*=7.2 Hz, CH₃), 2.68 (s, 3H, CH₃), 4.40 (q, 2H, *J*=8.4 Hz, CH₂), 6.96 (d, 1H, J=9.8 Hz, ArH), 7.39-7.42 (m, 2H, ArH), 8.27 (d, 1H, *J*=2.4 Hz, ArH), 8.36 (d, 1H, *J*=2.4 Hz, ArH), 11.54 (s, 1H, OH), 12.65 (s, 1H, OH); ¹³C NMR (75.46 MHz, CDCl₃): δ =14.1, 30.7 (CH₃), 62.5 (OCH₂), 115.3, 119.4 (C), 120.3 (CH), 123.7, 127.8, 127.9 (C), 131.5, 136.4, 136.5, 137.2 (CH), 161.5 (C-OH), 164.5 (C=O), 168.2 (C-OH), 197.3, 198.3 (C=O); IR (neat): v=3077 (w), 3005 (w), 2938 (w), 1738 (w), 1672 (s), 1622 (s), 1587 (s), 1455 (s), 1409 (s), 1318 (s), 1175 (s), 780 (s) cm⁻¹; GC–MS (EI, 70 eV): *m*/*z* (%): 364 (M⁺, ³⁷Cl, 17), 362 (M⁺, ³⁵Cl, 54), 316 (100), 301 (26), 273 (28), 245 (13), 189 (16), 155 (31); HRMS (EI) calcd for C₁₈H₁₅ClO₆ [M⁺, ³⁵Cl]: 362.05517, found: 362.054803.

3.2.9. Ethyl 3-acetyl-5-(3,5-dichloro-2-hydroxybenzoyl)-2hydroxybenzoate (**5i**)

Starting with 6,8-dichloro-3-formylchromone 4i (243 mg, 1.0 mmol), 3,5-bis(silyl enol ether) 2 (348 mg, 1.1 mmol), and Me₃SiOTf (0.05 mL, 0.3 mmol), 5i was isolated as a light yellow solid (320 mg, 80%), mp=145-146 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.34$ (t, 3H, J = 7.02 Hz, CH₃), 2.66 (s, 3H, CH₃), 4.37 (q, 2H, *I*=7.3 Hz, OCH₂), 7.35 (d, 1H, *I*=2.3 Hz, ArH), 7.53 (d, 1H, *I*=2.7 Hz, ArH), 8.26 (d, 1H, J=1.95 Hz, ArH), 8.36 (d, 1H, J=2.7 Hz, ArH), 11.93 (s, 1H, OH), 12.67 (s, 1H, OH); ¹³C NMR (75.46 MHz, CDCl₃): δ=14.1, 30.6 (CH₃), 62.5 (OCH₂), 110.5, 113.5, 115.7, 120.5, 125.8, 127.2 (C), 133.8, 136.6, 137.4, 141.4 (CH), 158.4 (C-OH), 164.8 (C=O), 168.2 (C-OH), 196.8, 198.5 (C=O); IR (neat): v=3070 (w), 2996 (w), 2979 (w), 1671 (s), 1626 (s), 1590 (s), 1448 (m), 1418 (s), 1249 (s), 1163 (s), 789 (s) cm⁻¹; MS (EI, 70 eV) m/z (%): 400 (M⁺, [2×³⁷Cl], 3), 398 (M⁺, [³⁷Cl³⁵Cl], 21), 396 (M⁺, [2×³⁵Cl],33), 353 (14), 350 (100), 337 (11), 279 (6), 189 (8). HRMS (EI) calcd for $C_{18}H_{14}Cl_2O_6$ [M⁺, 2×³⁵Cl]: 396.01620, found: 396.015936.

3.2.10. Ethyl 3-acetyl-5-(5-fluoro-2-hydroxybenzoyl)-2-hydroxybenzoate (**5j**)

Starting with 6-fluoro-3-formylchromone **4**j (192 mg, 1.0 mmol), 3,5-bis(silyl enol ether) 2 (348 mg, 1.1 mmol), and Me₃SiOTf (0.05 mL, 0.3 mmol), 5j was isolated as a crystalline solid (270 mg, 79%), mp=111-112 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.36 (t, 3H, *J*=6.5 Hz, CH₃), 2.66 (s, 3H, CH₃), 4.36 (q, 2H, *J*=9.1 Hz, CH₂), 6.95-7.00 (m, 1H, ArH), 7.10-7.24 (m, 2H, ArH), 8.26 (d, 1H, *J*=2.5 Hz, ArH), 8.35 (d, 1H, *J*=2.5 Hz, ArH), 11.36 (s, 1H, OH), 12.63 (s, 1H, OH); ¹³C NMR (62.90 MHz, CDCl₃): δ =14.1, 30.7 (CH₃), 62.4 (OCH₂), 115.6 (C), 117.2, 119.9, 123.9 (CH), 125.6, 127.9 (C), 136.4, 137.2 (CH), 152.7, 156.5 (C), 159.1 (C-OH), 164.4 (C=O), 168.3 (C-OH), 197.3, 198.7 (C=O); IR (neat): v=3078 (w), 3008 (w), 2928 (w), 1737 (w), 1668 (s), 1591 (s), 1468 (s), 1420 (s), 1318 (s), 1241 (s), 783 (s) cm⁻¹; GC–MS (EI, 70 eV) *m/z* (%): 346 (M⁺, 56), 300 (100), 272 (32), 257 (37), 229 (16), 189 (13); HRMS (EI) calcd for C₁₈H₁₅FO₆ [M⁺]: 346.08471, found: 346.0084999.

3.3. General procedure for the synthesis of 6a-j

To 3-formylchromones **4a–j** (1.0 equiv) was added Me₃SiOTf (0.3 equiv) at 20 °C. After stirring for 10 min CH₂Cl₂ (8 mL/mmol) was added, the solution was cooled to 0 °C, and the 1,3,5-tris (trimethylsiloxy)-1-ethoxyhexa-1,3,5-triene **3** (1.1 equiv) was added. The mixture was stirred for 12 h at 20 °C and was subsequently

poured into an aqueous solution of hydrochloric acid (10%). The organic and the aqueous layer were separated and the latter was extracted with CH_2Cl_2 (3×80 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, *n*-heptane/EtOAc=10:1).

3.3.1. Ethyl 3-(2-hydroxy-5-(2-hydroxybenzoyl)phenyl)-3oxopropanoate (**6a**)

Starting with 3-formylchromone **4a** (261 mg, 1.5 mmol), 1,3,5tris(silyl enol ether) **3** (641 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), **6a** was isolated as a highly viscous oil (210 mg, 43%). ¹H NMR (300 MHz, CDCl₃): δ =1.13 (t, 3H, *J*=6.78 Hz, CH₃), 3.91 (s, 2H, CH₂), 4.08 (q, 2H, *J*=7.56 Hz, CH₂), 6.7 (m, 1H, ArH), 6.9 (t, 1H, *J*=7.98 Hz, ArH), 7.38 (m, 2H, ArH), 7.76 (d, 1H, *J*=2.0 Hz, ArH), 7.79 (d, *J*=2.67 Hz, 1H, ArH), 8.00 (d, *J*=3.72 Hz, 1H, ArH), 11.63 (s, 1H, OH), 12.14 (s, 1H, OH); ¹³C NMR (62.89 MHz, CDCl₃): δ =14.0 (CH₃), 45.7 (CH₂), 61.9 (OCH₂), 118.4, 118.6, 118.81, 118.85 (CH), 129.03, 132.73, 132.97 (CH), 132.97, 136.39, 137.84 (C), 163.04, 165.70 (COH), 166.41, 166.43, 198.5 (C=O); IR (neat): *v*=3042 (w), 2980 (w), 2872 (w), 1734 (s), 1681 (s), 1584 (s), 1479 (s), 1352 (s), 1290 (s), 1183 (s), 794 (s) cm⁻¹; ESI⁺-MS (ESI-TOF/MS) *m/z* (%): 351.08 [M+Na]⁺ calcd for C₁₈H₁₆O₆ [M⁺], found: 328.09469.

3.3.2. Ethyl 3-(2-hydroxy-5-(2-hydroxy-5-methylbenzoyl)phenyl)-3-oxopropanoate (**6b**)

Starting with 6-methyl-3-formylchromone **4b** (282 mg, 1.5 mmol), 1.3.5-tris(silvl enol ether) **3** (641 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), 6b was isolated as a yellow solid $(186 \text{ mg}, 36\%), \text{mp}=81-84 \circ \text{C}; {}^{1}\text{H} \text{ NMR} (250 \text{ MHz}, \text{CDCl}_{3}): \delta = 1.31 (\text{t}, 1.31 \text{ c})$ 3H, J=7.1 Hz, CH₃), 2.32 (s, 3H, CH₃), 4.07 (s, 2H, CH₂), 4.25 (q, 2H, *J*=7.1 Hz, CH₂), 7.06 (d, 1H, *J*=9.0 Hz, ArH), 7.13 (d, 1H, *J*=9.0 Hz, ArH), 7.36 (m, 2H, ArH), 7.89 (dd, 1H, J=2.0, 8.7 Hz, ArH), 8.16 (d, 1H, J=2.0 Hz, ArH), 11.60 (s, 1H, OH), 12.29 (s, 1H, OH); ¹³C NMR $(75.46 \text{ MHz}, \text{ CDCl}_3): \delta = 14.0, 20.4 (CH_3), 45.7 (CH_2), 61.9 (OCH_2),$ 118.3 (CH), 118.4, 118.5 (C), 118.7 (CH), 128.0, 129.2 (C), 132.4, 132.9 (CH), 136.7, 137.8 (CH), 161.0, 165.6 (COH), 166.4, 198.3, 198.5 (C=0); IR (neat): v=2970 (w), 2930 (w), 2859 (w), 1726 (s), 1630 (s), 1587 (s), 1479 (s), 1324 (s), 1207 (s), 1170 (s), 785 (s) cm⁻¹; GC-MS (EI, 70 eV) *m*/*z* (%): 342 (M⁺, 86), 296 (100), 281 (23), 268 (31), 253 (48), 225 (19), 189 (12), 134 (45); HRMS (EI) calcd for C₁₉H₁₈O₆ [M⁺]: 342.10979, found: 342.109866.

3.3.3. Ethyl 3-(5-(5-ethyl-2-hydroxybenzoyl)-2-hydroxyphenyl)-3-oxopropanoate (**6c**)

Starting with 6-ethyl-3-formylchromone 4c (303 mg, 1.5 mmol), 1,3,5-tris(silvl enol ether) 3 (641 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), 6c was isolated as a yellowish brown solid (240 mg, 45%), mp=55–58 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.22 (t, 3H, J=7.5 Hz CH₃), 1.30 (t, 3H, J=7.1 Hz, CH₃), 2.456 (q, 2H, J=8.1 Hz, CH₂), 4.05 (s, 2H, CH₂), 4.12 (q, 2H, J=6.0 Hz, OCH₂), 7.03 (d, 1H, *J*=8.3 Hz, ArH), 7.13 (d, 1H, *J*=8.7 Hz, ArH), 7.39–7.7.43 (m, 2H, ArH), 7.90 (dd, 1H, J=1.9, 8.7 Hz, ArH), 8.16 (d, 1H, J=1.95 Hz, ArH), 11.60 (s, 1H, OH), 12.30 (s, 1H, OH); ¹³C NMR (62.90 MHz, CDCl₃): δ=14.0, 15.7 (CH₃), 27.9, 45.6 (CH₂), 61.9 (OCH₂), 118.4 (CH), 118.4, 118.5 (C), 118.7 (CH), 129.2 (C), 131.3, 132.9 (CH), 134.6 (C), 136.3, 137.8 (CH), 161.1, 165.6 (COH), 166.4, 198.1, 198.5 (C=O); IR (neat): v=2963 (m), 2930 (m), 1735 (m), 1680 (w), 1628 (s), 1583 (s), 1479 (s), 1352 (m), 1285 (s), 1201 (s), 832 (m) cm⁻¹; GC–MS (EI, 70 eV): m/z (%): 356 (M⁺, 30), 310 (75), 267 (17), 241 (12), 148 (100), 133 (62), 84 (23); HRMS (EI) calcd for $C_{20}H_{20}O_6$ [M⁺]: 356.12544, found: 356.125284.

3.3.4. Ethyl 3-(2-hydroxy-5-(2-hydroxy-5-isopropylbenzoyl)phenyl)-3-oxopropanoate (**6d**)

Starting with 6-isopropyl-3-formylchromone **4d** (324 mg, 1.5 mmol), 1,3,5-tris(silyl enol ether) **3** (641 mg, 1.65 mmol), and

Me₃SiOTf (0.08 mL, 0.45 mmol), **6d** was isolated as a yellow solid (260 mg, 47%), mp=60–63 °C; ¹H NMR (250 MHz, CDCl₃): δ =1.22–1.32 (m, 9H, 3CH₃), 2.88 (m,1H, CH), 4.07 (s, 2H, CH₂), 4.25 (q, 2H, *J*=7.2 Hz, OCH₂), 7.04 (d, 1H, *J*=8.6 Hz, ArH), 7.14 (d, 1H, *J*=8.6 Hz, ArH), 7.40–7.48 (m, 2H, ArH), 7.90 (dd, 1H, *J*=2.0, 8.8 Hz, ArH), 8.17 (d, 1H, *J*=2.1 Hz, ArH), 11.59 (s, 1H, OH), 12.30 (s, 1H, OH); ¹³C NMR (75.46 MHz, CDCl₃): δ =14.1, 23.9, 24.0 (CH₃), 33.1 (CH), 45.7 (CH₂), 61.9 (OCH₂), 118.3 (C), 118.4 (CH), 118.5 (C), 118.7 (CH), 129.2 (C), 129.9, 132.9, 134.9, 137.8 (CH), 139.2 (C), 161.1, 165.6 (COH), 166.3, 198.5, 198.5 (C=O); IR (neat): *v*=3058 (w), 2956 (m), 2924 (m), 1744 (s), 1681 (w), 1653 (m), 1628 (s), 1583 (s), 1480 (s), 1343 (m), 1207 (s), 1181 (s), 832 (s) cm⁻¹; GC–MS (EI, 70 eV) *m*/*z* (%): 370 (M⁺, 77), 324 (53), 309 (78), 283 (17), 267 (23), 162 (46), 147 (100), 44 (37); HRMS (EI) calcd for C₂₁H₂₂O₆ [M⁺]: 370.14109, found: 370.140462.

3.3.5. Ethyl 3-(2-hydroxy-5-(2-hydroxy-5-nitrobenzoyl)phenyl)-3-oxopropanoate (**6***e*)

Starting with 6-nitro-3-formylchromone **4e** (328 mg, 1.5 mmol), 1,3,5-tris(silyl enol ether) **3** (641 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), **6e** was isolated as a yellow solid (160 mg, 29%), mp=130–133 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.19 (t, 3H, *J*=7.1 Hz, CH₃), 3.96 (s, 2H, CH₂), 4.25 (q, 2H, *J*=7.1 Hz, OCH₂), 7.10 (m, 2H, ArH), 7.36 (m, 2H, ArH), 7.84 (dd, 1H, *J*=2.1, 8.7 Hz, ArH), 8.14 (d, *J*=2.0 Hz, 1H, ArH), 8.30 (m, 1H, ArH), 12.30 (br, 2H, OH); ¹³C NMR (75.47 MHz, CDCl₃): δ =14.0 (CH₃), 45.9 (CH₂), 62.1 (OCH₂), 117.6, 118.7 (C), 119.5, 119.7, 128.8, 129.4, 130.8, 133.5 (CH), 137.5, 139.5 (C), 166.1, 166.5 (COH), 167.7, 197.3, 198.3 (C=O); IR (neat): *v*=3088 (w), 2969 (w), 2849 (w), 1726 (s), 1628 (s), 1593 (s), 1519 (m), 1470 (s), 1338 (s), 1209 (s), 742 (s) cm⁻¹; GC-MS (EI, 70 eV) *m/z* (%): 373 (M⁺, 37), 327 (100), 310 (23), 286 (64), 258 (40), 166 (40), 147 (25), 120 (60); HRMS (EI) calcd for C₁₈H₁₅NO₈ [M⁺]: 373.07922, found: 373.078728.

3.3.6. Ethyl 3-(5-(5-bromo-2-hydroxybenzoyl)-2-hydroxyphenyl)-3-oxopropanoate (**6f**)

Starting with 6-bromo-3-formylchromone 4f (379 mg, 1.5 mmol), 1,3,5-tris(silyl enol ether) **3** (641 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), 6f was isolated as a yellow solid (190 mg, 31%), mp=117-120 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.21 (t, 3H, J=6.9 Hz, CH₃), 2.68 (s, 2H, CH₂), 4.23 (q, 2H, J=7.1 Hz, OCH₂), 6.91 (d, 1H, J=8.85 ArH), 7.06 (d, 1H, J=8.75 Hz, ArH), 7.51 (m, 1H, ArH), 7.79 (d, 1H, J=1.75 Hz, ArH), 7.83 (d, J=1.75 Hz, 1H, ArH), 8.06 (d, *J*=1.8 Hz, 1H, ArH), 11.56 (s, 1H, OH), 12.24 (s, 1H, OH); ¹³C NMR (75.46 MHz, CDCl₃): δ=14.0 (CH₃), 45.7 (CH₂), 62.0 (OCH₂), 110.4, 118.6 (C), 119.1 (CH), 120.1 (C), 120.6 (CH), 128.3 (C), 133.0, 134.5, 137.3, 138.9 (CH), 161.8, 166.0 (COH), 166.3, 197.2, 198.5 (C=O); IR (neat): v=3073 (w), 3002 (w), 2966 (m), 1728 (s), 1680 (s), 1643 (s), 1626 (m), 1447 (s), 1462 (s), 1422 (s), 786 (s) cm⁻¹; GC-MS (EI, 70 eV) m/z (%): 408 (M⁺, ⁸¹Br, 47), 406 (M⁺, ⁷⁹Br, 47), 362 (78), 360 (75), 291 (28), 200 (100), 147 (30), 120 (41), 92 (14); HRMS (EI) calcd for C₁₈H₁₅BrO₆ [M⁺, ⁷⁹Br]: 406.00465, found: 406.004404.

3.3.7. Ethyl 3-(5-(3,5-dibromo-2-hydroxybenzoyl)-2-hydroxyphenyl)-3-oxopropanoate (**6g**)

Starting with 6,8-dibromo-3-formylchromone **4g** (331 mg, 1.0 mmol), 1,3,5-tris(silyl enol ether) **3** (427 mg, 1.1 mmol), and Me₃SiOTf (0.05 mL, 0.3 mmol), **6g** was isolated as a light brown solid (159 mg, 33%), mp=101-103 °C; ¹H NMR (250 MHz, CDCl₃): δ =1.21 (t, 3H, *J*=6.9 Hz, CH₃), 3.97 (s, 2H, CH₂), 4.14 (q, 2H, *J*=7.1 Hz, OCH₂), 7.06 (d, 1H, *J*=8.7 Hz, ArH), 7.58 (d, 1H, *J*=2.3 Hz, ArH), 7.78-7.84 (m, 2H, ArH), 8.07 (d, *J*=2.0 Hz, 1H, ArH), 12.13 (s, 1H, OH), 12.27 (s, 1H, OH); ¹³C NMR (75.46 MHz, CDCl₃): δ =14.0 (CH₃), 45.7 (CH₂), 62.1 (OCH₂), 110.4, 113.5, 118.7 (C), 119.2 (CH), 120.6, 128.3 (C), 133.3, 133.8, 137.6, 141.3 (CH), 158.4, 166.2 (COH), 166.3, 197.0, 198.4 (C=O); IR (neat): *v*=3067 (w), 3002 (w), 2974 (m), 2919 (m), 1735 (s), 1694 (w), 1651 (s), 1626 (s), 1583 (s), 1214 (s), 1159 (s), 771

(s) cm⁻¹; GC–MS (EI, 70 eV) m/z (%): 488 (M⁺, [2×⁸¹Br], 13), 486 (M⁺, [⁸¹Br⁷⁹Br], 27), 484 (M⁺, [2×⁷⁹Br], 13), 442 (23), 440 (47), 399 (29), 371 (34), 278 (100), 147 (32), 120 (40). HRMS (EI) calcd for C₁₈H₁₄Br₂O₆ [M⁺, 2×⁷⁹Br]: 483.91516, found: 483.915113.

3.3.8. Ethyl 3-(5-(5-chloro-2-hydroxybenzoyl)-2-hydroxyphenyl)-3-oxopropanoate (**6h**)

Starting with 6.8-dibromo-3-formylchromone **4h** (312 mg. 1.5 mmol), 1,3,5-tris(silyl enol ether) **3** (641 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), 6h was isolated as a reddish brown solid (203 mg, 37%), mp=98-99 °C; ¹H NMR (250 MHz, CDCl₃): $\delta = 1.30$ (t, 3H, I = 7.1 Hz, CH₃), 4.07 (s, 2H, CH₂), 4.25 (q, 2H, I = 7.1 Hz, OCH₂), 7.07 (d, 1H, J=9.0 Hz, ArH), 7.16 (d, 1H, J=8.7 Hz, ArH), 7.48-7.52 (m, 1H, ArH), 7.56 (d, 1H, J=2.5 Hz, ArH), 7.90 (dd, 1H, J=2.0, 8.7 Hz, ArH), 8.16 (d, 1H, J=1.95 Hz, ArH), 11.63 (s, 1H, OH), 12.33 (s, 1H, OH); 13 C NMR (75.46 MHz, CDCl₃); $\delta = 14.1$ (CH₃), 45.7 (CH₂), 62.0 (OCH₂), 118.6 (C), 119.1 (CH), 119.4 (C), 120.3 (CH), 123.6, 128.3 (C), 131.5, 133.0, 136.2, 137.6 (CH), 161.4, 164.5 (COH), 166.3, 197.5, 198.4 (C=O); IR(neat): v=3074(w), 2978(m), 2932(w), 1728(m), 1668(s), 1626 (s), 1587 (s), 1459 (s), 1274 (s), 1173 (s), 1095 (s), 834 (m) cm⁻¹; GC-MS (EI, 70 eV): *m*/*z* (%): 364 (M⁺, ³⁷Cl, 20), 362 (M⁺, ³⁵Cl, 47), 316 (100), 301 (25), 273 (34), 245 (15), 207 (14), 155 (35), 44 (29); HRMS (EI) calcd for C₁₈H₁₅O₆Cl [M⁺, ³⁵Cl]: 362.05517, found: 362.054802.

3.3.9. Ethyl 3-(5-(3,5-dichloro-2-hydroxybenzoyl)-2-hydroxyphenyl)-3-oxopropanoate (**6***i*)

Starting with 6,8-dichloro-3-formylchromone 4i (240 mg, 1 mmol), 1,3,5-tris(silyl enol ether) 3 (430 mg, 1.1 mmol), and Me₃SiOTf (0.05 mL 0.3 mmol). **6i** was isolated as a light vellow solid (230 mg, 59%), mp=124-125 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.21$ (t, 3H, I = 6.9 Hz, CH₃), 3.97 (s, 2H, CH₂), 4.14 (q, 2H, I = 7.1 Hz, OCH2), 7.06 (d, 1H, J=8.7 Hz, ArH), 7.58 (d, 1H, J=2.3 Hz, ArH), 7.78-7.84 (m, 2H, ArH), 8.07 (d, J=2.0 Hz, 1H, ArH), 12.13 (s, 1H, OH), 12.27 (s, 1H, OH); ¹³C NMR (75.46 MHz, CDCl₃): δ =14.0 (CH₃), 45.7 (CH₂), 62.1 (OCH₂), 110.4, 113.5, 118.7 (C), 119.2 (CH), 120.6, 128.3 (C), 133.3, 133.8, 137.6, 141.3 (CH), 158.4, 166.2 (COH), 166.3, 197.0, 198.4 (C=O); IR (neat): v=3068 (w), 2976 (w), 2938 (m), 2869 (m), 1735 (s), 1656 (w), 1628 (s), 1588 (s), 1576 (s), 1214 (s), 1161 (s), 771 (s) cm⁻¹; MS (EI, 70 eV) m/z (%): 400 (M⁺, [2×³⁷Cl], 3), 398 (M⁺, [³⁷Cl³⁵Cl], 22), 396 (M⁺, [2×³⁵Cl], 34), 353 (6), 350 (51), 309 (40), 190 (67), 188 (100). HRMS (EI) calcd for $C_{18}H_{14}Cl_2O_6$ [M⁺, 2×³⁵Cl]: 396.01620, found: 396.015918.

3.3.10. Ethyl 3-(5-(5-fluoro-2-hydroxybenzoyl)-2-hydroxyphenyl)-3-oxopropanoate (**6j**)

Starting with 6,8-dibromo-3-formylchromone 4j (288 mg, 1.5 mmol), 1,3,5-tris(silyl enol ether) 3 (641 mg, 1.65 mmol), and Me₃SiOTf (0.08 mL, 0.45 mmol), 6j was isolated as a light yellow solid (179 mg, 34%), mp=72-74 °C; ¹H NMR (250 MHz, CDCl₃): δ=1.22 (t, 3H, J=7.1 Hz, CH₃), 3.97 (s, 2H, CH₂), 4.22 (q, 2H, J=7.1 Hz, OCH₂), 6.96–6.99 (m, 1H, ArH), 7.08 (d, 1H, J=8.75 Hz, ArH), 7.20 (m, 1H, ArH), 7.81 (d, 1H, *J*=2.0 Hz, ArH), 7.85 (d, 1H, *J*=2.1 Hz, ArH), 8.06 (d, 1H, *J*=2.0 Hz, ArH), 11.39 (s, 1H, OH), 12.23 (s, 1H, OH); ¹³C NMR (75.46 MHz, CDCl₃): δ =14.1 (CH₃), 45.7 (CH₂), 62.0 (OCH₂), 118.6 (C), 119.1 (CH), 119.4 (C), 120.3 (CH), 123.6, 128.3 (C), 131.5, 133.0, 136.2, 137.6 (CH), 161.4, 164.5 (COH), 166.3, 197.5, 198.4 (C=0); IR (neat): $\nu = 3069 (w)$, 2998 (w), 2974 (w), 1726 (s), 1655 (s), 1634 (s), 1622 (m), 1470 (s), 1598 (s), 1469 (s), 987 (s) cm⁻¹; GC–MS (EI, 70 eV) *m*/*z* (%): 346 (M⁺, 50), 326 (18), 300 (44), 259 (50), 231 (70), 139 (100), 120 (31), HRMS (EI) calcd for C₁₈H₁₅FO₆ [M⁺]: 346.08472, found: 346.084658.

Acknowledgements

Financial support by the State of Mecklenburg-Vorpommern is gratefully acknowledged.

References and notes

- For a review of 1,3-bis(silyloxy)-1,3-butadienes, see: Langer, P. Synthesis 2002, 441.
 Review: Langer, P. Synlett 2006, 3369.
 Review: Feist, H.; Langer, P. Synthesis 2007, 327.

- Review: Peist, P., Earger, P. Synthesis 2007, 527.
 Review: Bellur, E.; Feist, H.; Langer, P. Tetrahedron 2007, 63, 10865.
 Review: Langer, P. Eur, J. Org. Chem. 2007, 2233.
 Review: Langer, P. Synlett 2007, 1016.
 (a) Chan, T.-H.; Stössel, D. J. Org. Chem. 1988, 53, 4901; (b) Chan, T.-H.; Stössel, D. J. Org. Chem. 1986, 51, 2423.
- 8. Freifeld, I.; Bose, G.; Eckardt, T.; Langer, P. Eur. J. Org. Chem. 2007, 351.
- 9. Appel, B.; Rotzoll, S.; Reinke, H.; Langer, P. Eur. J. Org. Chem. 2006, 3638.
- 10. CCDC-716902 and CCDC-716903 contain all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/ retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ, UK; fax: +44 1223 336 033; or deposit@ccdc.cam.ac.uk.
- For a recent review on the strength of hydrogen bonds, see: Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res. 2009, 42, 33.